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In this paper, a string/slider non-linear coupling system with time-dependent boundary
condition is considered. One partial differential equation (PDE), describing the transverse
small-amplitude vibration of the string, non-linearly coupled with one ordinary differential
equation (ODE), describing the horizontal displacement of the slider, are derived by
Hamilton’s principle. This is a moving boundary problem since the unknown position of the
slider has to be determined as a part of the solutions. A transformation of the variable that
converts the original non-stationary boundary conditions to a set of fixed boundary
conditions is proposed to avoid the increased complication and loss of accuracy associated
with unequal space intervals near the moving boundary. The finite difference method with
variable grid is employed to show the numerical results of the coupling effect between the
string and slider. Finally, some periodic motions of the moving boundary are assigned to
show the divergence of the string vibrations.

© 2001 Academic Press

1. INTRODUCTION

String-like systems, including tapes, belts, chains, band, threads wires fibers, and other
materials with negligible bending rigidity and a straight, unsagged equilibrium
configuration, have broad applications in the areas of chemical, textile, computer, and
tape-recorder industries as well as in many other processes. Many workers [1-3] on the
vibration behavior of string-like problems have been studied for the systems with a fixed
length and no axial motion. Some researches [4-6] have recently appeared in literature
concerning vibration and dynamic stability of axially moving materials such as travelling
string, tapes, cables, beams and plates. Although string-like systems exhibit movement, the
interest of such studies is still in the fixed length consideration.

Kotera and Kawai [7] analyzed the free vibrations of a string with time-varying lengths
by Laplace transformation. Ram and Caldwell [8] introduced a new method of distorted
image to resolve the free vibration of a string with moving boundary conditions. Fung et al.
[9, 10] used the Galerkin approximation with time-dependent basis functions to analyze
dynamic response and stability of a string/slider system. The Galerkin approach is too
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Figure 1. The string/slider coupling system: (a) undeformed configuration, (b) deformed configuration.

computationally intensive due to the time-dependent boundary and its complex mode
shape. Wang et al. [11] studied a three-dimensional underwater cable with time-dependent
length by variable-size finite element method (FEM). The FEM is also time consuming and
less amenable to vectorization. However, the FDM [12] is the most popular choice for
numerical solutions of the moving boundary problems. By using the FDM, the idea of
a co-ordinate transformation to fix a moving boundary [13] is extended to the string/slider
coupling system. The FDM simplifies the process of the formulation and programming and
conserves the accuracy of the solutions.

The physical model studied in this paper is shown in Figure 1, in which the lumped mass
and spring could be regarded as one subsystem to affect the main string system on the
vibration amplitudes. In the present work, the transverse small-amplitude vibration of
string is considered in the string/slider coupling system, and Hamilton’s principle is
employed to develop the non-linearly coupled equations of motion. A special FDM with
variable-grid scheme is proposed to approximate both the moving boundary and the PDE
at the neighboring grid points. The variable-grid method based on co-ordinate
transformation, which transforms the time-varying domain into an invariant one, is
employed for solving the moving boundary problems. In the numerical simulations, some
periodic motions of the moving boundary are given to investigate the energy growth and
divergent vibration amplitudes.

2. FORMULATION OF EQUILIBRIUM EQUATIONS

The string/slider coupling system is shown in Figure 1. The mass-spring appearing in the
left end is one-degree-of-freedom (d.o.f.) system, which coupled with the continuous string
system. It is assumed that the string moving through the slider is frictionless. Position x = 0
is the static equilibrium one of the slider, and it is also the left boundary of the string in the
undeformed configuration. Position x = y(t) is the current one of the slider and is the left-
hand side moving boundary of the string in the deformed configuration. Neglecting the
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longitudinal elastic motion of the string [1, 2] is an appropriate assumption at lower
frequencies and small amplitude of lateral motion. To obtain the coupled equations of
motion. Hamilton’s principle which states that the variation of the time integral of the
kinetic energy minus the potential energy of the string/slider coupling system is zero will be
used. However, the application of the principle is not straightforward, since there is
a moving boundary involved.

2.1. EQUATION OF MOTION

Hamilton’s principle is applicable to a set of particles and when this set tends towards
infinity the aggregate of particles are considered to form the continuum. In the process of
variation, the aggregate of particles is considered fixed, i.e., between any two times t; and
t, the same particles are considered throughout the variation. To this end, we first consider
the entire length of the string and write Hamilton’s principle as

2 (1) !
J 5<J L’dx—i—J de+;my'2(t)—;ky2(z)>dt=o, (1)

(1)

7]0

where
L=35p(v + cve)> — 5 Tog 2

is the Lagrangian density of string for y(t) < x < [, in which the transverse small-amplitude
vibration v(x, t) of the string is considered; m is the mass of the slider, k is the spring stiffness,
c is the travelling speed of the string, p is mass per length of the string and T is the initial
tension. In the interval — [, < x < y(¢), the integral in equation (1) vanishes since over this
interval the transverse deflections and slopes of the string are zero and, consequently, the
Lagrangian density function, L', is equal to zero. Hence, equation (1) may finally be
expressed in the form

ts 1
f 5<J de+;my'2(t)—;1«,2@)>dz=o. 3)
ty (1)

Performing the variation on equation (3) and collecting the like terms, one obtains

Lo 0 0L 0 oL oL oL oL
0= e S spdx + | S| = | E x| s
L {L(n( dt dv,  Ox a”x) e [5Ux vl [avx ) avt]y(r) 1.1
1

oL t
+ [— L — mii(t) — ky(®) ], 57»} dt + [J P ovdx + m?(t)év] . 4)
7(1) t t

1

In Figure 1(b), it is apparent that v(y(z),t) = v(l, t) = 0 and y(¢) is not defined. In the
following variation process, y(t) can be expressed in one relation from the natural boundary
condition derived from the process of calculus of variations [ 14]. In Figure 2, v*(x, t) is the
true path of the transverse displacement. It is apparent that

ov(x, t) = v(x, t) — v*(x, 1) (5)

has no meaning in the interval [y(t), y(t) + dy(t)], since v(x, t) is not defined for x € (y(¢),
v(t) + dy(t)). By inspection of Figure 2, we define

00 = v(y(t) + 6y (1), £) — v*(y(1), 1). (6)
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Figure 2. An external, v*(x, t), and a neighboring comparison curve, v(x, t).

Since the boundary point x = () moves in the horizontal direction, we have the true
deflection v*(y(t), ) = 0 and the comparison deflection v(y(t) + dy(t),t) = 0. From equation
(6), we have

55 = 0. )

Expanding the power series of v(y(t) + (), t) about v(y(t), t), substituting into equation (6)
and using equation (7), we obtain

ov(y(1), 1) = — vx(y(1), 1) 0y + 0, ®)

where = means “equal to the first order”.
Introducing relation (8) into equation (4), we obtain

Lol ¢ 0L 0 OL oL oL oL
o= [ (-2%&_2 N ovdx+ | o | - | = s
L {j( ot ov, 0Ox ﬁvx> vaxs |:50x Ul [50x ¥ 50:1@) !

+ {[ — L+ v, <5L — X 8L>} — mj(t) — ky(t)}éy}dt. )
vy, ov, ) |y

Finally, assuming that dv and Jy vanish at t; and t,, and noting the arbitrariness of
ov(x, t) for y(t) < x < [, the following Euler-Lagrange equation is obtained:

0oL 0

=0 fory(t)<x<l. (10)

X

oL
ot dv, 0Ox Ov

The associated boundary conditions v(y(t),t) = 0 and v(/, t) = 0 are specified physically.
One additional condition from the last term of equation (9) is

{|: — L+ vx<aL —X 6>:| — mj(t) — ky(t)}éy =0 atx=7() (11
O0vy ove) |
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By substituting into equations (10) and (11), the expression for L, as given in equation (2),
the equation of motion and the boundary conditions can be obtained as

Pty + 20ty + (p* — Thoe = 0, 9(0) < x <1, (12)
mj(t) + ky(t) + (3 pvi — 5 pc®vi + 5 To: + Xpo,vy),0 =0, (13)
o6, 1) =0, v(l,1)=0. (14a, b)

Itis noted that equation (12) is a linear governing equation of the string and equation (13) is
called the transversality condition [ 14], which can be treated as the governing equation of
one-d.o.f. mass—spring system, non-linearity coupled with the motion of the string.

For convenience in studying the effects of system parameters, the dimensionless variables
and parameters are defined as

By substituting the above variables and parameters into equations (12)-(14), one obtains
the dimensionless governing equations and boundary conditions:

Vet 2BV + (B> — DVee =0, T'<E<1, (15)
Lo+ QT + GM[1 — (I, = p?*IVE}e=r = 0, (16)
V(I,7) =0, (17)
V(l,1)=0. (18)

2.2. VARIATION OF THE TOTAL ENERGY
The dimensionless form of the total mechanical energy is

1
E) = éj [V, + BV + V2TdE + bm 2 + 1,2, (19)

r

where m, = 1/M, k, = kl/pc3. Owing to the translating speed  being not zero, the total
derivative operator with respect to dimensionless time is defined as

. d 0 0
()ZEZE‘Fﬁaﬁé‘ (20)

Taking the total derivative of equation (19) with respect to dimensionless time, we have

1

E() = f [V, 4+ BV (Vs + 28Vee + B2Vee) + VeVer + V2]

- E[%(K + ﬁvé)z + %V.fz]é:F + mr[;:[:rr + krFFz (21)
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Substituting equations (15)—(18) into equation (21), using integration by parts

1 1
f(m+ﬁ%wwﬁ=vun+ﬂnm—j;nwz+ﬁ%a@,

r
and the relationship
VAl 7) = T'V(T', ),
equation (21) is reduced to
E(c)=BLIVZ(1,0) — V2 (T, 7)) (27)

This expression shows that the total mechanical energy of the coupled string/slider system is
time varying. In the case f = 0, the total mechanical energy does not change as the time
increases.

3. THE FDM WITH VARIABLE GRID

The approximate solutions for transverse motion of string with the moving boundary at
& = I'(r) will be solved via a special FDM with variable grid. The way of varying space grid
is proposed. The aim is to avoid the increased complication and loss of accuracy associated
with unequal space intervals near the moving boundary. The variable-grid method based on
co-ordinate transformation [13, 14], which transforms the time-varying domain into
a constant one, is found to be the most suitable for the string/slider system with moving
boundary.

We keep the number of space intervals between & = I'(t) and 1, i.e., between a fixed and
a moving boundary, constant and equal to N. Thus, for equal space intervals,
AE =[1 — I'(t)]/N is different in each time step. The moving boundary is always on the first
grid line. The transformation

_ ¢TI

T1-TI() @8)

n(z)

fixes the moving position of the slider at # = 0 for all 7, and the end-point £ = 1 is also fixed
as 1 = 1. By using the standard relationships

v, |2 Lin—1 . .
Vim0, Vee=—"0, Vi=—"r—V.+ 7V,
STl T (A-I)® —r <f
voob=by 1 oy, L
ér_(l_r)z mty_p’nr (l—F)Z n>
—O[L(1—=T)+2r?] . 2Ly —1) 5, IFn—1)>* 4 _
Vn:(n ) [1( ) + z]V (1 —1) cn—1) P+ 7 (29a-e)

(1—T) "I " (1 —T)?
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to transform from V(& 1) to V(y, 1), the governing equations and boundary conditions
(15)-(18) can be written as

2Lin — ) + 26 +ﬁ2—1+F2(11—1)2+2[>’E(11—1)I7
I—F nt (1_[')2 n

Ve +

+(17—1)[Fﬂ(1—F)+112]+2ﬁr >

T V,=0, 0<n<l, (30)
M1 — (I = B)*] _

Lo+ Q7T + { 21—T) V”Z},,o =0 G

V(0,7)=0, V(1,1)=0. (32a, b)

In the process of co-ordinate transformation, ¢ = I'(t) becomes = 0 and the equal space
intervals An = 1/m is equal in each time step. The moving boundary is always on the first
grid line. It is seen that the position I'(t), speed I.(t) and acceleration I;.(t) of the moving
boundary appear as coefficients in the transformed equation (30). The co-ordinate
transformation reduces the problem to one in a fixed domain and then the standard central
and forward differences for both the time and space derivatives are used to discrete
equations (30) and (31).

4. OBSERVATION

It is seen that Hamilton’s principle and calculus of variation are used to derive the
governing equations and boundary conditions of the string/slider system. The special FDM
with the variable-grid scheme is proposed to approximate the numerical solutions. From
the dynamic formulation and approximation analysis of the FDM with variable grid,
several important observations can be made:

1. The geometrical non-linearity of the string and non-linear stiffness of the spring are not
introduced, but the non-linearities arise in the boundary condition (16).

2. If the geometrical non-linearity of string and non-linear stiffness of spring were
introduced, the coupling system will be more complicated and there will be much more
possibilities for internal resonance.

3. Undergoing the variable transform (28), (i) the governing equation (30) and the boundary
condition (31) and non-linear and time varying, and (ii) The original moving boundary
problem is transferred to a fixed boundary one.

4. From equation (27), when the transport speed of the string is zero, the total mechanical
energy of the string/slider system is unchanged.

5. NUMERICAL RESULTS

A continuous string and a lumped slider similar to that of Fung and Cheng [9] are used
in the numerical simulation. The parameter values are as follows: T = 200N, p = 2 kg/m,
I=1m, m =05kg, and the spring stiffness k is adjusted to satisfy the two frequency

relationships g = wo or 2w,, where wo = (n/l)/c3 — ¢? is a constant value of the first
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Figure 3. The transient responses of the slider and string: (a) amplitude of the slider with w; = 2w, (b) transverse
displacement in the middle of the string with o, = 2wy, (c) amplitude of the slider with w; = w,, (d) transverse
displacement in the middle of the string with w; = wq. (—, f =0;---, f =0-2).

mode frequency of the string with a fixed length I. The parameters given here are chosen to
study the coupling effect on the free vibration of the string/slider system.

5.1. STRING/SLIDER COUPLING SYSTEM

The grid number N = 1000 in different translating speeds =0 and 0-2, and the
numerical stability criterion with time step 5 x 10~ # are taken in the FDM. The transient
amplitude of the slider and the transverse displacement in the middle of the string with
w, = 2w, are shown in Figures 3(a) and 3(b) respectively. The non-linear terms are coupled
between V(y, 1) and I'(t). The term 17,, (0, 7) can be treated as the excitations of I'(t) in
equation (31) and the excited I'(r) feedbacks to V (1, t) of equation (30). From the coupling
effects between V (i, 7) and I'(7), it is seen that the beating amplitudes of the slider build up
and then diminish in a regular pattern. In physical meaning, the energy can transfer between
the string and slider through the boundary condition. In addition, the frequencies of
vibrations are time-dependent because of the varying length of the string. Figures 3(c) and
3(d) show the transient amplitude of the slider and the transverse displacement in the middle
of the string with wg = w,. It should be noted that the internal resonance phenomenon does
not occur as markedly in this case. Thus, energy rarely transfers between the slider and
string. The amplitude of the slider in Figure 3(c) is almost always negative and the values are
much smaller than that with w; = 2w,, where the internal resonance occurs. The
amplitudes (dash lines) with translating speed = 0-2 have the lower frequencies than those
(solid lines) with = 0.

5.2. ASSIGN THE BOUNDARY MOTION

Cooper [15] have found that with some periodic motion of the boundary, the energy of
the travelling waves may grow without bound and the amplitude of vibration becomes
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Figure 4. The transient responses of transverse amplitude in the middle of the string with the periodic moving
boundaries: (a) Yy = 7, (b) Y =2, (c) ¥ = 57.

infinite. In order to show the divergence of the vibration amplitude of the string, the
periodic function I'(t) is chosen as

I'(t) = 0-1 sin (Y7, (33)

where  is the frequency of the moving boundary position. The vibration of the string is
assumed to have the initial condition V¥ (, 0) = 0-1sin (). Since I'(r) is given in equation
(33), only equation (30) needed to be solved for the transient vibrations of the string.

Figure 4 shows the transverse amplitudes in the middle of the string with three different
frequencies = w, 27 and 57 of the periodic moving boundary position. It is shown that the
transient responses diverge with a decreasing time as the frequency y is n, 27 and 5n. The
vibration amplitude explodes finally at t = 4-15 for y = = and 7 = 2-11 for = 2n. The
higher frequency of the moving boundary position y = 57 has the shortest exploding time
1 = 0-39. Moreover, the vibration energy clearly grows without bound from these figures.
Due to the influence of the periodic moving boundary position, the vibration string
becomes unstable.

6. CONCLUSIONS

The method for studying the moving boundary effect on the vibration of
a string/slider-coupling system has been investigated in this paper. The preliminary results
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presented here indicate the following conclusions:

1.

It is found that the internal resonance occurs when the frequency of the slider is two
times of that of the string. The string vibrations and the slider displacement are all the
beating phenomena under the internal resonance.

From the numerical results, it is seen that when the transport speed of the string is
introduced, the natural frequency of the string will increase.

The transient responses of the string diverge when an appropriate periodic motion of the
moving boundary is given.

The vibration amplitude explodes when the frequency of the moving boundary has an
integer time of the string and the higher frequency has the shorter exploding time.
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